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DETERMINING THE BENDING FREQJENCIE OF

MULTISElliINGERBOX BEAMS

By Willism W. Davenport

SUMMARY

The accuracy of the substitute-stringer approach for including the
effects of sheer lag in the calculation of the transverse modes and fre-
quencies of multistringer box beams is investigated. Box beams, the covers
of which consist of normal-streps-csrrying stringers on sheets which carry
not only shear but also normal stress, are analyzed exactly. Frequencies

a’ of besms with various numbers of stringers, obtained by means of this
exact analysis, serve to determine the possible accuracy of the frequencies
obtained by the substitute-stringer approach.

w

INTRODUCTION

The use of a substitute-stringer approach for including the effects
of shear lag in the vibrational analysis of built-up box beams was inves-
tigated in reference 1. Various thin-walled rectangular tubes were ideal-
ized to substitute-stringer structures and the frequencies of the first
few bending modes of the idealized structures were ccmpared with those
of the original besms. The results indicated where the substitute stringer _
should be located in order to i%ke into account accurately the effect of
shear kg on the frequency; for a fairly tide variety of tube proportions,
locating the substitute stringer midway between the web and the centroid
of the half-cover yielded frequencies accurate within 1 or 2 percent for
higher as well as lower modes of vibration. However, because the rec-
tangular tubes employed in the investigation hsd constant wall thickness
there was no definite-information given regarding the accuracy of fre-
quencies that may be obtained for a besm which has discrete flanges and
stringers in the covers and different web and cover-sheet thickness.

z
The purpose of

substitute-stringer
G sentative of actual

multistringer beams

this report is to examine the accuracy of the
approach when applied to a beam more nearly repre-
built-up box besms. Frequencies of various realistic
of the type shown in figure l(a) are determined by

.
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means of the substitute-stringer approach a-given in reference 1. These
frequencies are then compared with the frequencies obtained by means of”
an exact vibrational malysis of a multistringer befi. Conclusions are -f

thereby made with regard to the proper location of the substitute stringer.
-.
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cross-sectional
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box besm

area of

area of

srea of

emea of

stringers in a half-cover of

flange of substitute-stringer structure .

a substitute stringer

flsmge of multistringer box besm

pth stringer of

effective shear-carrying area

halfdepth of beam

half-width of beam

width of pth panel

half-width of middle
when....N is odd

distance between web

distance between web

psmme~er defined by

constant

psmuneter defined by

paremeter defined by

multistringer box besm

.-

-.

panel when N is even, nonzero constant

and sdjacent substitute stringer

and centroid of srea of half-cover

equation (A17) or equation (A40)
.— -

s
equation (A18) or equation (A41)

—
0

equation (A2~) or equation (A42)— . .
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E modulus of elasticity
.

‘q=kF=G
G shear modulus of elasticity (taken equal to E/2.65herein)

I bending moment of inertia

%j(q)=pml+ %3,)+(W2
*“

kB
i

PL4
frequency coefficient, o —

EI
.

% v1 EIcoefficient of shear rigidity, – —
L%

L half-length of besm

N number of stringers in a cover

N1 (P) parameter defined by equations (A%) and (A35) or by equa-
tions (A43) smd (AM)

.

.
~i(d = Fq2($92 + ~Iq

r = 6(N + eN)
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JP)
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x

Yp

-determinant

cover-sheet

—

given by equation (A30)
‘.-=

thickness -,. ..— .._

effective cover-sheet thickness for normal stress
*

web thickness

maximum kinetic energy

maximum strain eper~

longitudinaldisplacaent

vertical displacement of

longitudinal coordinate

chordwise coordinate for

of a point on the pth panel .
.

cross section of beem

pth panel ~:

%(’),% Fourier series coefficients

bq
‘q = 2GtcL

w
. —

Kronecker delta (O when i # $; lwhen i = j)

Lagrangian multiplier

mass of beem per unit

@i(P) parsmeter defined

u natural frequency

* natural frequency

length .

by equation (A8) 8

of multistringer beam in figure 3
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THE MULTIS’I!RINGERBOX BEAM AND THE

●

SUBSTITUTE-STR~GER STRUCTURES

A doubly symmetrical multistringer box besm of the @pe considered
● in the present paper is shown in figure l(a). M order that the covers

of this structure msy behave realdsticall.ywith regard to shesr-lag
effects, the cover sheets are permitted to carry not only shear but ako
normal stress. The following simplifying assumptions sremde:

(1) The flanges and stringers

(2) The webs carry only shear
is included in the flanges).

carry only normal stress.

(the bending resistance of the web

(3) Lon@tudfwl inertia (rotary inertia) is neglected.

(4) The cross sections maintain their shape.

Assumptions (2) snd (3) are generally known to be good for reasonably

i
shallow beams such as those considered in this report; assumption (4)
is gocd if a nomnal smount of bulkhead stiffness is present.

In the appendix a exact vibration analysis, dmilar to those of
9 references 1 and 2, is csrried out for a multistrinqer besm of the type

shown in figure l(a). The Rsyle@h-Ritz ener~ procedure is used in
conjunction with appropriate Fourier series and I.agrangim multipliers
to obtain frequency equations for a box beam with say number of stringers.
Although the smal.ysisin the appendix allows unequal spacing of the
stringers, only the case of equally spaced stringers is considered
hereinafter.

The substitute-stringer structure for the beam of figure l(a) is
shown in figure l(b). The flange-web combination of this structure is
the ssme as that of its prototype; the covers, however, consist of sub-
stitute stringers which carry only normal stress and sheets which carry
only shear. The magnitude of the shear-lag effect in this structure
depends on *he location of the substitute stringers. A s~ested stringer
location given in reference 1 is

bs = O.’jbc (1)

where bS is the distance between a flange and the adjacent substitute

1 stringer and bc is the distance between a web end the centroid of

normal-stress-carrying area of the ha~-cuver.

s A vibration analysis of the substitute-stringer structure is carried
out in appendix B of reference 1.
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COMPARISON OF FREQJENCIl!SAS OBTAINED BY THE MULTISIKC!?GER

SOIJ.JTIONAND THE SUBSTITUTE-STRINGERAPPROACH

3636

●

●

In order to investigate the possible .accuracyof the substitute-
stringer approach for determining the frequencies of multistringer box
beans, comparisons are made between the frequencies of four multistringer
box beans as obtained by the analysis givti in the appendix and the corre-
sponding frequencies of their substitute-stringerstructures as obtained
by the analysis given in reference 1. The first three symmetrical trans-
verse modes of each beam with free-free end conditions sre considered.

The four besms have cross sections as shown in figure 2 and are
identical except for the msnner in which the total stringer srea is
distributed. Proportions cammon to all four besms are

~=6.o := 6.0 ~=
A.

1.25 — = 1.89 A
b

— = 0.75
atv b%

*
where L, h, a, %> and ~ ~e, respectively, the half-length, the

half-width, the half-depth, the web thickness, and the cwer-sheet thick-
ness; the total cross-sectional sxea of the stringers in a half-cover is D

given by A and the cross-sectional area of a flange is given by AO.

In addition to the preceding properties, the four bemns are aMke in that
stringers of each beam we equally spaced across the cbvers. The beams
thus differ only in the number of stringers on a cover; the cases con-
sidered are for N = 1,4, 7,,and w.

In figure 2 the various relations needed to obtain the parameters
of the multistringer solution for the four besms are given. When N is
infinite the stringers sre smeared out t~ a “stringer sheet” for which
the effective normal-stress-carryingthickness ~’ is different frcxn

the actual cover-sheet thickness tc.

The cross section of the substitute-stringeridealization is also
shown in figure 2. In accordance with the idealizing procedure of the
substitute-stringerapproach, the following relations we used to deter-
mine the perimeters needed in the substitute-stringersolution of refer-
ence 1:

AL =A+b~

where AF and AL are, respectively, the cross-sectional area of a

flange and stringer of the substitute.str~er been. it should be noted - r
that the only geometric property of the substitute-stringersi&ucture

—
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.

which msy be different for each of the four besms is the value of bs.

For the substitute-stringer location definedby equation (l), bs varies
by virtue of the variation of bc. The values of bc for the fow be-

are:

For 1 stringer,

For k stringers,

For 7 stringers,

For infinity stringers,

bc = 0.71hb

bc = O.%m

bc = 0.531b

bc = 0.500b

r

4
The frequency coefficients kB =0 ~ obtained fram both -the .

substitute-stringer solution where bs = O.pc and the multistringer

solution for each of the four besms are given in table I. ti addition
to these results, the frequency coefficients obtained by a solution
which includes transverse shear but not shear lag have been included.
This latter set h= been presented in order to demonstrate the influence
of shear lag and waE obtained frmn equation (15) of reference 3 with the
rotary inertia psmmeter kRI equal-to zero.

.
The influence of stringer location on the frequency m of the

substitute-stringerstructure for each of the four beams is presented
graphically in figure 3. The frequency is given in the form of its

relative error Q - 1 when compared with the exact frequency ~e of
%

the multistringer structure; the curves indicate how the errors vazy
with substitute-stringer location.

DISCUSSION OF

T!heresults given in table I show
quency coefficients as obtained by the

RESULTS

good agreement between the fre-
substitute-stringer approach with
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b@C = o.~ aid
as”may be noted,

NACA TN 3636

those obtained by the multistringer solution. However,
the frequency coefficients for the substitute stnctue .

with ‘bS/bC = 0~5 are sfight-w high for all but the third modes of the
~

cases for N = 1 and N = C=J.Reference to figure 3 indicates that, for
all but the case of N = ~, the maximum errors for the modes considered ●

would be reduced by using a value of bS/bC = 0.55; for example, for the

case of N = 7, themsximmm error for this new value woul.dbe less than
1 percent.

The results of table I indicate that the stringer sxea distribution
has little influence on the frequency; however, the assumption should
not be made that the influence of shear lag is negligible. As may be
seen in table I, the reduction in frequency due to the inclusion of sheu-
lag effects is 4-.8,16.7, and 19.1 percent, respectively, for the first
three symmetrical modes of the case where N = 7.

CONCLUDING REMARKS

The numerical results of the present paper indicate that the
substitute-stringerapproach can yield accurate frequencies for multi-
stringer box beams. Review of the numerical results of NACA TecMcal
Note 3158 together with those of the present paper suggests that a
value of O.~~ for bS/bc (ratio of the distance between web and adjacent

substitute stringer to distance between web ad centroid of the area of
the half-cover) defines a slightly more appropriate substitute-stringer
location for built-up box besms thaA bS/bC = 0.50, the value suggested

in NACA Technical Note 3158.

.

Lmgley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., J~uary 6, 1956.
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APPENDIX

9

VIBRATION SOLUTION OF A MULTISTRINGER BOX BEAM

The simplifying assumptions for the multistringer besm are given
in the body of the paper and a cross section consisting of two cases is
shown in figure 4. Case I applies when N is even and case II when
N is odd, where N is the number of stringers in a cover. ti addition
to the dimensions and coordinates defined by figure k, the length of the
besm is assigned the value 2L, and x is defined aa the longitudinal
coordinate with its origin at the midpoint of the besm. It should be
noted that br+l> the distance between the rth stringer and the center
line for case 1, is half the width of the middle panel.

For a trmsverse mode of vibration let w(x) be the amplitude of
a vertical displacement of a cross section and let UP(X,YP) be the

smplitude of a longitudinal displacement of a point on the pth panel.
Then the maximum strain energy is

U=2E

where

13N=l - (-l)N
2

and

b(r+l),p
= o

(Al)

(A2)

(p+r+l) (A3)

b(r+l),(r+l) ‘1
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The msximum kinetic.energy when the influence of longitudinal inertia
is neglected is

●

T=$IMD2 ! LW%x (A4)
-L

where p is the mass per unit length of the.stmcture which the multi-
stringer beam represents.

> 0.
It shouldhe not~that equations (Al) to (Ak)

hold for N =

In the following sections appropriate infinite trigonometric series
are assumed to represent the displacements and then the Rayleigh-Ritz
ener~ procedure is,applied.

Symmetrical Transverse Modes of a Free-Free Multistringer Beam

Appropriate trigonometric series for the synnnetricaltransverse
modes of a free-free beam are

up(x,Yp) = % x %n(p)sin~
m=l,3,5 n=0,1,2

(p = 1,2, .

w(x) =C+ ‘z cm Cos ~~
m=l,3,5

Wp
Cos —

%

..(r+ l)) (A7)

(A6)

9

1!

The choice of these particular series was guided by the orthogonality
required for simplification of the expressions in the strain-energy
equation; C in equation (A6) is introduced in order to allow w(*L)
to be unrestricted.

Because of the geometry of the structure the following restraining
relations mu~t hold:

Up(x,bp) -

Substituting equation

where i = 1,3,5, . .

—

Up+l(x,o) = o (p=l,2, . ..r) (A7)

(A5) into equation (A7), multiplyhg by sin &
. 9 and integrating frcxa -L to’ L yie~s b

2[ jain(p)(-l)n - ain(p+l)=@i(p)=o
n=O,1,,2

(p = 1,2, . . . r)(i = 1’,3,5,. . .) (A8)

w
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h accordance with the Rsyleigh-Ritz procedure the expression

u -T- ~ ~ JP)%(P)

p=l,2 m=l,3,5

is held stationary with respect to the coefficients of the asswned
The A’s in expression (A9) are La@%n@an multipliers introduced

11

(A9)

series.
to

maintain the condition stated in (A8). ‘The expressions for U and T
of equation (A9) sre given by equations (Al) snd (A!), respectively, and
the displacements are in turn givenby equations (A>) and (A6). Thus,

differentiating expression (A9) with respect to the .Jq)!s, Ci’s>

sad C independently and setting the respective results equal to zero
yields the following equations:

(i = 1,3,5, . ● .)(3 = 0,1,2, . ● .)

(i = 1,3,5, . . .)(J = 0,1,2, . . .)(q= 2,3, . . . r + l)(r Z 1)

kici + *(*) s %LJ’)- %?%2(%)(-0%=,
n=0,1,2

(i = 1,3,5, ● ● .)

[

kB2 C + 1.S,5+%)(-’)%.0=,

where

KiJ(q) _ 2 ifi2
- ‘~ (T) ~+@+ (Jfi)2

(A1O]

(All)

(A12)

(A13)
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2
~2

‘q.
.-Q
G~2

~q.lbq
%2 =

GtCL2(l.+ ‘@(r+l)2q)

= _ -%% -,

tea

p#L4kB2== --

%=&@

i3q=~
2GtCL

NACA TN 3636

(A14b)

(A14c)

(A14d)

(A14e)

(A14f)

(A14g]

(A14h)

(A14i)

0

4

(A14j)

.—

Dividing equation (A1O) by ~j (1) and summing over j = 0,1,2, . . . .

gives, on solving for x %,(=) :
3=0,1,2

b

“

(i =1,3,5, ● ● .) (A15)
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Similarly, for

●

z
9 3=0,1,2

where

equation (All):

%,(q)
= @BqAi(q)(l - ~(r+l)J - ~i(q)pqxi(q-l)

(i=l,3,5,’ . . .)(q =2,3, . . . r+l) (AI.6)

.

(~ =

In equation (A17) the definition of Bi
(r+l)

when q = r + 1 in equation (A16) the entire

drops out.

1,2, . . . r+l) (A18)

has %een neglected because

term containing Bi(r+l)

By substituting equations (A15) and (A16) into equations (A1O)
and (All) the foLlowi~- equations may be obtained:

(

(i = 1,3,5, . . .)(J = 0,1,2, .
● .) (A19)



(i = 1,3)5, . . .)(3 = 0,1,2, . . .)(q= 2,3, . . . r) (Am) 9

Equations (A19) and (A20), when multiplied by (-1)$ and summed over
3 = 0,1,2, . . .,yield —

(i = 1,3,5, . ● ● ) (Am)

(i = 1,3,5, . . .)(q = 2,3, . . . r) (A22) -

In order to obtain equations in the form of (A21) and (A22) it should be.
noted that

—.

[

~i(q)cikd ‘3,&,2&”-,Bi(q,

(q = 1,2,3, . . .r) (A23)

snd

[

z (dBf(d m (-I)J
J4,1,2 * - %

=1

w =c,(q)+D,(q)
3=0, ,2 qj

(q = 1,2,3, . . . r) (A24) #

\ w
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where

{ :

F

z 1}
~ ~)j 2

~i(!L) m
+ 2-

=0,1,2 %J q_ J& 2 @
Di(q) =

, + m,(q) ~ 1
~4,1,2 Ki$q)

(q = 1,2,3, . . . r) (-)

Substituting equation (A15) into equation (AU?) results in

(i=l,3,5, . . .) (A26)

and substituting equations (A21) and (A16) into equation (A8), when
P = 1, gives

(i=l,3,5, . . .)

Substituting equations (A16) and (A22) into equation (A8) yields

bp+l ~i (p+l)xi(p+l)

% Q- 5(r+l),(p+U)=0

(i = 1,3,5, . . .)(p =

By Cramer’s rule, equations (A26) to (A28) msy be

in terms of C/pi; if in the resulting expression

J

2,3, . . . r)

(A27)

(A28)

solved for ci/~1

the determinants in



—.

the numerator ma denmlnator are each expandedby the first column and ii’in the reaultirg

aenmd.natorthe cofactor of .%(1) (~) H(g) IS ELIXJO expanded by the first column, the fdhmlng

eqmti.on refiultE:

+&
cl %3%2(*)(-U pi(l)
—. (i = 1,3,5, . . ,)

+ 2H(~)2(Bi(1))%$2) .

where

M ,,,b).!pp) s$hp+l) . . .

(w

*U(X)

. .,. , -l(rJ # . # , w #-4
h

b - 1,B3, . . . ,) (@

1
I

1

1

k &l , . ,

I ,,.11”, .’1 i 1“1’’1” “
1-

“ t
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By expanding the determinant of (A30) by the first column the following
recurrence relation msy be obtained:

~i(P) + DJ’) + ~ 1 [1bp+l~i(p+l)~i(p+l)b~lBi(p+l)2~i(P+2)

bP

(P=l,2,3, . ..1)l) (A31)

where

~i(r)

[ 1=q(r)+ Di(r)+b& ci(r+’)

and

Si(r+l) = ~

Now, by dividing the numerator and denominator of the rifit-hand member

of equation (@) by Si(1) and then using equation (A31), the following

equation results:

~&2 & (-1)
YC

r.=

.—. -——

(i = 1,3,5, -

Repetition of this procedure ultimately yields the continued

. . ) (Ax)

fraction



Noting the,definiti~ of H and then defini~

(i -u,% . . .) (431

(
li~ p) by the equations

t’ ‘

and

where

* .7 ,1
‘1 ‘~ ‘,.

(()) 2
Bi p I

b. =a

. .

(P =

1 ““l ‘
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permits equation (A33) to be written as

.

.i=5&w& (i = 1,3,5, ● . .) (A36)
*

(~)’ %
‘tc

‘i- Jl)

Substituting equation (A36) into equation (A13) yields the frequency
equation

‘;[+=:%’m~,(“37)%
The following closed

. ~(p), ~d ~(p) msy be

reference 4:

x
j+, ~,’ * = *(~)pp ~~ (llL#)pp

(P=l,2, . ..r+l) (A38)

2

(P)
forms for the summations involved in ~ ,

obtained by methods shnilar to those given in

,+~,, ~-= ’(m)pps:ti(y)p(p=1~2~*o*r+’) (A39),—
w -z P

By use of equations (A38) and (A39), equations (A17), (A18), ~ (=)
may now be written as

)

~(p)= 2[5)p;;:(&p+%(pg (’=lJ’~*.r) (~~)

~(P) = 1
J.

[
)( ) ()!QLPptanh ~Pp+~ 1(P)

21- O@(r+l),p 2

(p=l,2, . ..r+l) (AM)
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From

JP) .

equations (A34),

sions for

JP)

G A

(P =1,2,3, . . . r)

(A35), (A40), (ml), S@ (A42) the following

NJ r+l) may be obtained:

.

(AA2]

expres -

L . . J

(p = 1,2, . . . ~)(bo = a) (A43 )

~(r+l) . b.

[ 1~ (’--‘+(%9’-t~(!$)’,+, + I&”)

(r 2 1) (J4!4)
—

The rate of convergence of the series of frequency equations given
in equation (A37) is increased by substracthg the expression

and adding the equivalent closed-form expression

The resulting equation is

[

co

k~’ tan kB~ + 2kB3~3 x
m=l,3,5

=0 (A45)
.
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whe,e I&) is determined by equations (A43) snd (~). It should be

noted that equation (~5) will hold for N stringers where N # O.

For the case when N = O, handling equations (A12), (A13), md (A1O)

when hi(l) = O in a manner similsr to that used for the case of

N stringers yields equation (~5) except that

(M6)

The values PI ~d Ri‘1) are given in equations (Alkb) snd (A1.4c),

respectively; the value of bl is, of course, b.

b order that equation (A45) together with (A46) msy apply to the
case for N = ~, PI meybe redefinedby

?#tc ‘
pl =

GL2tc
(M7)

Antisymmetrical Transverse Modes of a Free-Free Multistringer Besm

Appropriate trigonometric series for the s.ntisymmetricaltransverse
modes of a free-free besm are

up(x,Yp) = m& n;,, %n(p) Cos ~ Cos y

(p=l,2, . ..r+l) (Ah8)

m

w(x) =Cx+
%

~ sin $&
m=2, ,6

As in the case for the symmetrical modes the choice of the psrti.culsx
. series was guided by the orthogonality required for simplification of

the expressions in the strain-energy equation; the term Cx was added

in order to allow sufficient freedmn of w(*L).
.



22

Treatment s“~lsr
yields the equation

NACA TN 3636

to that accorded the-case of the symmetrical modes

— I

.

= O (A50) ●

where ~, kS, mad ~ are given in equations (Alltf ), (A14g), md (A14j ),

(1) is given by equations (A43) and (A.44). ASrespectively, and ~

before, this equation holds

equation (A50) msy be used,

the ssme equations ae used

equation (A47).

for N stringers, where N

where ~(’) is defined by

with the definition of pl

#O. When N=O,

(A46); for IJ = ~,
—

as given in

.

.

.

.
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TABLE I

EFFECT OF STRINGERDISTRIBUTIONON ~

solutionCase

kB

l.stS-.
mode

2d sylmll.
mcde

3d Sm.

mode

Elementary
+

trsmmerse sheer

Substitute-
kringer, IhJbc = 0.5

5.42 24.5

20.1

48.3

5.16 37.8

38.1Multistringer 5.07 19.7

Elementary
+ —

transversesheer
5.42 24.5 48.3N=4

—

“Substitute-
tringer, b@_bC = 0.5 20.8

20.2

24.5

20.9

20.4

‘5.22 39.1

38.8

48.3

Multistringer

Element~
+

transversesheer

5.15

N=7 5.42

Substitute-
,tringer,bS/bC = 0.5

Multistringer

5.22 39.2

39.1

Elementary
+

transverseshesr
N =CO 5.42 24.3 48.3

Substitute-
tringer, b@C = 0.5 5.23 21.0 39.5

.
5.19 20.8 39.9Multistringer .

.
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(a) MuJ_tistringerbox beam.

.

“

(b) Substitute-stringer structure.

Figure 1.- Multistringer box beam and its substitute-stringer structure.
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(a) Multistringer beams.
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(b) Substitute-stringer beam.

Figure 2.- Cross sections of mult.istringerbeams and
besm.

substitute-stringer
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Figure 3.- Effect of substitute-stringer location on the accuracy of the
substitute-stringerapproach for box beams with different stringer
distributions. The labels lS, 2S, and 3S denote symmetrical nndes.
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Case II.

Figure 4..-Cross 8ection of doubly symmetrical multistringer box beam
for either even or odd number of stringers in a cover.
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